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ABSTRACT 

Torsional  v i b r a t i o n  response of  r o t a t i n g  machinery must 
be determiced when des igning an  equipment t r a i n .  Accu- 
r a t e  response p r e d i c t i ~ n  r s q u i r e s  s o p h i s t i c a t s d  a n a l y s i s  
techniques which include cons ide r t ion  of a l l  fo rc ing  
funct ions  i n  t h e  system i n  a d d i t i o n  to t h e  mass - e l a s t i c  
p roper t i ea  of  t h e  s h a f t s  snd eoupl isgs .  Matrix methods 
u t i l i z i n g  t h e  eigenvalue s o l u t i o n  provide an qdequate 
so lu t ion  technique. A proper understanding of t h e  
assumptions r e l a t e d  t o  t h e  s o l u t i o n  technique i s  essen- 
t i a l .  Such a r e a s  a s  lumping, branched system i n t e r -  
pre ta t ion ,  gear  too th  f l e x i b i l i t y ,  and coupling para- 
meters a r e  but  a few examples where assumptions must be 
made which a r e  e s s e n t i a l  t o  a proper so lu t ion .  I s o l a t i o n  
of t c r i o n a l  v i b r a t i o n s  can be acconqli4hed once t h e  
system t o r s i o n a l  response is  proper ly  defined.  Case 
h i s t o r i e s  u t i l i z i n g  t h i s  technique a r e  presented t o  
i l l u s t r a t e  methods of t o r s i o n a l  i s o l a t i o n .  

INTRODUCTION 

+ Torsional  v i b r a t i o n  problasts are being encountered i n  an 
ever  increas ing numher due t o  t h e  expanded use  of high 
speed r o t a r y  equipment. These problems a r e  d i f f i c u l t  
t o  recognize i n  t h e i r  primary s t a g e s ,  and many times 
they f i r s t  manifest  themselves when a f a i l u r e  occurs. 
Typical ly,  t h i s  type of f a i l u r e  r e s u l t s  i n  a s u b s t a n t i a l  
penalty i n  terms of p l a n t  downtime, involving f i r s t  an 



ana lys i s  of  t h e  source of  t h e  problem, and then t h e  
d e f i n i t i o n  and implementation of  a s u i t a b l e  t reatment.  

To diagnose and minimize t h e  occurrence of  poss ib le  
f a i l u r e s  due t o  t o r s i o n a l  v i b r a t i o n ,  s e v e r a l  types  of 
ana lys i s  may be employed. 

The o b j e c t  of t h i s  paper i s  t o  p resen t  t h e  most p r a c t i-  
c a l  and accura te  method f o r  c a l c u l a t i n g  both t h e  t o r-  
s i o n a l  resonant  frequency and t h e  forced v i b r a t i o n  re- 
sponse. With such ana lyses ,  stress l e v e l s  can be c a l-  
cula ted  and compared t o  a f a i l u r e  c r i t e r i o n .  In  addi-  
t i o n ,  t h i s  gaper p r e s e n t s  one method which has been 
success fu l ly  used t o  eva lua te  t h e  e f f e c t  of gear  s t i f f -  
ness on t o r s i o n a l  response. Although gear  s t i f f n e s s  
is o f t e n  neglected o r  improperly simulated i n  some in-  
s tances ,  f i e l d  experience shows its e f f e c t  a r e  o f t e n  
c r i t i c a l .  

Case h i s t o r i e s  a r e  included t o  g i v e  example d a t a  and to  
i l l u s t r a t e  how a forced v i b r a t i o n  a n a l y s i s  can be used 
t o  p r e d i c t  equipment r e l i a b i l i t y  o r  t o  a i d  i n  f a i l u r e  
so lu t ion .  

HOLZER ANALYSIS 

The method most commonly employed t o  c a l c u l a t e  t h e  to r-  
s i o n a l  resonant  frequency of s h a f t i n g  systems i s  t h e  
Holzer Analysis,  c h i e f l y  because it is conveniently 
adaptable t o  hand c a l c u l a t i o n s .  The method r e q u i r e s  
successive es t ima tes  of t h e  s h a f t  resonant  frequency a s  
input ,  and it is p o s s i b l e  t o  overlook s o l u t i o n s  i f  t h e  
se lec ted  frequency increment i s  t o o  l a rge .  The Holzer 
t abu la t ion  method i s  u s e f u l  f o r  a cursory  check of most 
s h a f t  systems; however, it becomes q u i t e  cumbersome and 
tedious  when a forced v i b r a t i o n  response of complex sys- 
t e m s  is  required.  Forced v i b r a t i o n  problems can be made 
with t h e  Holzer Analysis;  however, t h i s  method does n o t  
account f c r  t h e  phese of  t h e  fo rc ing  to rques  i n  a cam- 
plex fo rc ing  funct ion;  the re fo r€ ,  an error can e x i s t .  
This e r r o r  is s l i g h t  f o r  r e l a t i v e l y  c c n s t a n t  torque 
machines; however, i n  r e c i p r c c a t i n g  compressors and in-  
t e r n a l  combustian ezgines ,  t h e  torque  is  decidedly  
unsteady dae  t o  p i s t o n  s t roke ,  and s u b s t a n t i a l  errors 
can the re fo re  be incurred.  

Another l i m i t a t i o n  c f  t h e  Holzer W-alys is  is t h e  in-  
a b i l i t y  t o  proper ly  s imula te  m u l t i p l e  branced geared 
systems. The dynamically equ iva len t  system presupposes 
t h a t  t h e  gea r  assembly is  t o r s i o n a l l y  r i g i d ,  which is 



approximately 
with generous 

the case in larse industrial gear boxes 
factors of safety. For less conservative- 

ly designed systems, gear tooth flexibility has a defi- 
nite influence on the torsional frequencies and should 
be considered. 

EIGENVECTOR - EIGENVALUE MATRIX SOLUTION 
A more powerful and versatile method for solving torsional 
resonant frequencies is the eigenvector-eigenvalue matrix 
solution. While this method insures the calculation of 
all the possible modes 05 vibration, it requires the use 
of a digital computer as the computations are numerous 
and complex. To calculate the tarsional resonant fre- 
quencies of a system, a mathematical model must be syn- 
thesized, which will respond in the same manner as the 
actual system. All of the elastic, mass and damping 
properties of the system are necessary to set up the 
mathematical model. Usually, these elastic properties 
and the masss inertia can be calculated, measured or ob- 
tained from the manufacturer of the element. 

Sample differential equations of motion have been written 
and &re included in Table I. These differential equa- 
tions can be converted into a matrix equation for sim- 
plicity of solution, and the general form of the equation 
would be : 

where [Jl is the diagonalized mass matrix and [K] is the 
stiffness matrix. These matrixes are shown in Table 11. 
Complex periodic motion may be reduced to individual 
harmonics which can be handled easier without compro- 
mising the rigorousness of the solution. The equation 
for simple harmonic motion can then be assumed for the 
general solution. 

0 = A sin at 



The following relationship for '6 can be obtained by differentiation 

8 = Aw cos  w t  

3 = - ~ w 2  sin o t  

-4 = -0 2 

By substitution, the matrix equation can be rewritten 

L 
where the [ w  ] represents the diagonalized eigenvalue matrix which wil l  

be called [I ] . This yields: 

By multiplying both sides of the matrix equation by [ J] l ,  the following 

equation results: 

and 

This form of the matrix is the eigenvalue equation. The 
values for [ A ]  for which the equation is soluble are 
known as the characteristic values, or eigenvalues, of 
the matrix. The vector so utions for f e ]  are the eigen- 
vectors of the matrix [JI-' IK1 which shall be referred 
to as the stiffness-mass natrix. 

Physically, the eigenvector represents the mode shape of 
the vibration, The corresponding eigenvalue represents 
the vibrational frequency squared. In general, the 
characteristic equation will have "nu roots with "nu 

corresponding eigenvectors for a system with nnn rotating 
masses. 



The so lu t ion  f o r  t h e  eigenvalues of a problem with f i v e  
masses w i l l  be a f i f t h  o rder  equat ion whose so lu t ion  w i l l  
g ive  f i v e  r o o t s  of t h e  c h a r a c t e r i s t i c  equation. Each of 
these  f i v e  r o o t s  w i l l  then r e p r e s e n t  a resonant  frequency 
squared. The c h a r a c t e r i s t i c  equation of t h i s  example is 
a s  follows: 

(where A, B. C ,  D ,  E, and F represen t  complex funct ions  
of mass and s t i f f n e s s .  The r o o t s  of t h i s  equation a r e  
t h e  eigenvalues from t h e  eigenvalue problem). 

The e igenvectors  a r e  obtained from t h e  o r i g i n a l  eigenvalue 
equatios.  A set of equat ions  can be der ived by using t h e  
st iffness-mass matrix,  mul t ip ly ing by an unknown eigen- 
vector ,  and forc ing t h i s  t o  equal  t o  t h e  product of t h e  
eigenvalue and t h e  unknokn eigenvector.  This  set 3f 
equations can be solved f o r  e igenvectorc ,  which represen t  
t h e  v i b r a t i o n  mode shape corresponding t o  t h e  eigenvalue 
o r  resonant  frequency. 

The eigenvector method of so lv ing  f o r  t h e  t o r s i o l ~ a l  re- 
sonant frequency and mode shapes enables  t h e  c a l c u l a t i o n  
of t h e  forced v i b r a t i o n a l  response of t h e  system due t o  
var ious  fo rc ing  func t ions  a t  d i f f e r e n t  m a s s  l oc i i t i tns ,  
including t h e  phasing of a l l  fo rces .  The damping of t h e  
system must a l s o  be included t o  i n s u r e  proper resonant  
frequencies.  An harmonic Four ier  expansion of t h e  forc-  
ing funct ion can be appl ied  a t  any mass locat ion.  I n  
t h i s  manner, a complex fo rc ing  func t ion  wi th  an a r b i t r a r y  
number of harmonics can be simulated. 

Systems containing s e v e r a l  p in ions  d r iven  by one gear 
which cannot be simulated r e a d i l y  by simple hand calcu-  
l a t i o n  methods can be solved by t h e  matr ix  method. The 
s t i f f n e s s  matrix can be modified by a d d i t i o n a l  o f f  
diagonal  terms which in f luence  t h e  d e f l e c t i o n  of t h e  branch 
po in t  mass. These a d d i t i o n a l  t e r m s  a r e  b e s t  determined 
by wr i t ing  t h e  t o r s i o n a l  equat ions  of motion i n  a sys te-  
matic method. The matr ix  equat ions  conta in ing t h e  s t i f f -  
ness matrix f o r  a branched gear  system w i l l  be solved i n  
t h e  same manner. 

Once t h e  system has  been modeled proper ly  and fo rc ing  
funct ions  appl ied ,  t h e  ampli tudes a t  each mass l o c a t i o n  
a r e  known. Since r e l a t i v e  d e f l e c t i o n  between t h e  masses 
determines t h e  stresses i n  t h e  s h a f t ,  stresses can be 
ca lcu la ted  f o r  each harmonic, and wi th  proper phasing, 
t h e  complex peak-to-peak stress wave can be generated 
which al lows f o r  t h e  c a l c u l a t i o n  of t h e  maximum o v e r a l l  
peak-to-peak stress. 

266 



GEAR TORSIONAL STIFFNESS 

Theory 

In many geared systems the effect of gear stiffness can 
exhibit a critical influence on calculating the torsional 
natural frequencies of the system. The effect of gear 
stiffness is usually increasingly important as the dy- 
namic load ncreases above the normal transmitted static 
torque loadf, particularly when the gear is located at a 
dynamic torque maximum in the torsional mode shape. 

Gear stiffness can only be approximated, since there are 
several parameters varying during rotation. These include: 

Instantaneous point of contact 

Direction of applied force 

Number of teeth in contact 

The following discussion will be limited to spur and 
bevel gears, since they represent a large majority of 
cases where gear stiffness is critical. The tooth pro- 
file is approximated by an isoceles triangle, and Figure 
1 illustrates the approximation and notation used. The 
linear flexibility is calculated from the equation2. 

This value must be calculated for each gearwheel and a 
correction factor must be applied to account for the 
following second order effects: 



(a )  Depress ion  of t h e  tooth su r f ace  at t h e  l ine of contact.  

(b)  Flexibi l i ty  of wheel  body adjacent  t o  t h e  tooth. 

(c) Deformation of wheel body. 

Exper ience  has shown the  following co r r ec t i on  f ac to r s  a r e  applicable: 

(a) R = 1 . 3  f o r  plain s p u r  gears .  

(b) R = 1.25 fo r  bevel  gea r s .  

(c )  R = 1.0  f o r  in te rna l  s p u r  gea r s .  

Using t he se  values,  t he  l inear  flexibility a s  re la ted  t o  e ach  g e a r  wheel  be-  

comes :  

The torsional stiffness of the gear system must be related 
to the torque on the pinion or bullgear. Assuming that 
the load is shared equally between the two teeth, the 
following expression can relate the flexibility to the 
appropriate torque. 

The torque related stiffness is in reference to the gear 
wheel with radius r. This stiffness can thereby be appli- 
ed as a stiffness between the two gear wheel mass in- 
ertias. The following sample analysis indicates the in- 
fluence of gear stiffness upon the torsional frequency. 

FIELD CASE 

In a recent startup at a chemical processing plant there 
were repeated cooling fan gear box failures. The failures 
occurred after various lengths of operation ranging from 
3-48 hours. A torsiograph was installed on one of the 
fan systems, and the unit was started and tripped several 



times. The data identified a torsional resonant frequency 
at approximately 23 Hz. This resonant frequency was found 
to be extremely close to the blade-passing frequency of 
the fan system (24 Hz.), indicating the possibility that 
the torsional resonance excited by the blade-passing per- 
turbations was a contributing cause of the shaft failure. 
In an effort to solve the problem, the system was simu- 
lated on the eigenvector-eigenvalue computer program. The 
gear stiffness was computed as outlined, and the calculat- 
ed torsional resonant frequency was in good agreement with 
the field data. To demonstrate the system sensitivity to 
gear stiffness, a parametric analysis was made by varying 
the gear stiffness. This data is presented in Table 111. 
It should be noted that the gear stiffness is important 
in the design stage where coincidence of resonant fre- 
quency and excitation is to be avoided. 

RECIPROCATING ENGINES 

Theory 

A comprehensive torsional analysis of a reciprocating 
engine driven system must properly simulate the mass- 
elastic properties of the crankshaft and the force pro- 
duced by the power cylinders. Simulation of the engine 
crankshaft stiffnesses and masses, although tedious, can 
be accomplished with careful calculations lr2 . The 
forced vibration response, however, is less straight- 
forward since it must include cylinder phasing (firing 
order), gas torques (harmonic content), and reciprocating 
mass inertia in combination with the dynamic response 
(mode shape). Gas torque curves are usually available 
for new engines in harmonic content form which can be 
directly used in the analysis3 . 
The harmonic torque amplitudes for each cylinder are 
applied to the rotating mass at each crank thrown by 
expressing the torque function as a series of sine and 
cosine terms including phase angles. In this form, the 
forcing functions are easily used in the eigenvector 
matrix method which intrinsically combines the forcing 
function with the dynamic response to produce the vibra- 
tion amplitudes and stresses. 

By utilizing the matrix generated from the equation of 
motion, in combination with the applied forces, the 
torsional deflections can be calculated. A damping term 
must be included to calculate a dynamic magnification 
factor ( Q )  which provides a relationship between vibra- 
tional amplitude and frequency ration The 



vibra t iona l  amplitude can be simply expressed by the  
following expression: 

This technique has been used t o  determine r e l i a b i l i t y  of 
reciprocating engine dr iven systems i n  t h e  design s tage  
a s  well a s  i n  operating systems. The following operat-  
ing un i t ,  plagued by s h a f t  f a i l u r e s ,  was analyzed by t h i s  
technique t o  determine t h e  cause of f a i l u r e s .  

Fie ld  Case 

A plan t  a i r  compressor system experienced several  s h a f t  
f a i l u r e s  because of operating near system to r s iona l  
na tura l  frequencies. The system cons i s t s  of a four- 
cy l iner  a i r  compressor dr iven by a 16-cylinder recipro-  
ca t ing  engine through a gear box. The mass-elastic 
proper t ies  of t h e  system were calculated,  and t h e  to r-  
sional  system was simulated with t h e  eigenvector-eigen- 
value method. The calculated t o r s iona l  na tura l  frequen- 
c i e s  of i n t e r e s t  a r e  a s  follows: 

f l  = 2688 cpm 

f2 = 4212 cpm 

f3  = 6180 cpm 

An i n i t i a l  ana lys i s  was made t o  study the  e f f e c t  of t h e  
engine torques on t h e  system. The forced v ibra t ion  
ana lys i s  included both t h e  engine and compressor loading 
torques which w e r e  obtained from the  equipment manufac- 
t u r e r  s. 

The maximum stresses f o r  t h i s  system occurred i n  the  
pinion s h a f t  and a r e  p lo t t ed  i n  Figure 2 f o r  t he  engine 
harmonics and the  second, t h i r d  and four th  compressor 
harmonics i n  t he  speed range of t h e  un i t .  The four th  
compressor harmonic exc i t e s  t he  f i r s t  to rs iona l  na tura l  
frequency a t  an engine speed of 1206 cpm. The t i r d  har- 
monic exc i t e s  t he  f i r s t  t o r s iona l  na tura l  frequency a t  
an engine speed of 1608 cpm. The second compressor 
harmonic is on the  f lank  of t he  reasonance curve, and 
these stresses increase  from 1700 t o  3000 p s i  peak-to- 
peak. The combined maximum s t r e s s e s  w e r e  caused by 



compressor loading to rques  a t  1608 cpm and w e r e  s l i g h t l y  
i n  excess of 14800 p s i  peak-to-peak which exceeds t h e  
U. S. MIL STD* c r i t e r i a  f o r  t o r s i o n a l  stress leve l s .  The 
maximum stresses produced by t h e  engine w e r e  10,000 p s i  
peak-to-peak when t h e  f o u r t h  o rder  r eac ted  with t h e  
second t o r s i o n a l  n a t u r a l  frequency. 

The Campbell diagram o r  i n t e r f e r e n c e  diagram shown i n  
Figure 3 i n d i c a t e s  which engine and compressor harmonics 
e x c i t e  t h e  t o r s i o n a l  n a t u r a l  f requencies  through t h e  
speed range. The second engine o rder  and t h e  t h i r d  and 
f o u r t h  compressor harmonics e x c i t e  t h e  f i r s t  t o r s i o n a l  
n a t u r a l  frequency (Figure 2 ) .  These produce t h e  major 
con t r ibu t ing  stresses which a c t  on t h e  system. The 
second t o r s i o n a l  n a t u r a l  frequency (4212 cpm), however, 
can be exci ted  by t h e  f i f t h ,  s i x t h ,  and seventh com- 
pressor  harmonics a s  w e l l  a s  t h e  t h i r d  and f o u r t h  engine 
orders .  The e f f e c t  of t h e  higher harmonics e x c i t i n g  t h e  
second t o r s i o n a l  n a t u r a l  frequency se rves  t o  increase  
t h e  stresses of t h e  p inion s h a f t  a l so .  The t h i r d  to r-  
s i o n a l  n a t u r a l  frequency (6180 cpm) can be exci ted  by t h e  
seventh through e leventh  compressor harmonics a s  w e l l  a s  
t h e  four th  through s i x t h  engine orders .  These higher 
harmonic torques  w i l l  a l s o  c o n t r i b u t e  a d d i t i o n a l  stress; 
however, these  harmonics produce a s m a l l  percentage of 
energy compared t o  t h e  f i r s t  few harmonics and conse- 
quently do not  cause a s i g n i f i c a n t  inc rease  i n  stress 
l e v e l .  

DISCUSSION AND CONCLUSION 

Proper des ign a n a l y s i s  should be implemented on r o t a r y  
equipment t o  i n s u r e  increased r e l i a b i l i t y  and minimal 
downtime due t o  excess ive  maintenance o r  f a i l u r e s .  One 
a rea  of major concern is t h e  l o c a t i o n  of t o r s i o n a l  
resonant  f requencies  r e l a t i v e  t o  t h e  e x c i t a t i o n  fo rces  
i n  t h e  system. The eigenvector- eigenvalue method pro- 
v ides  t h e  fol lowing information: 

*The al lowable t o r s i o n a l  stress f o r  t h i s  system 
based upon U.S. Navy MIL STD 167 i s  4000 p s i  zero peak 
o r  8000 p s i  peak-to-peak 



Calculation of a l l  possible resonant frequencies directly. 

Exact simulation of multiple-branched sys tems  i s  possible 

along with branch-on-branch capabilities. 

Forcing functions can be applied to  any m a s s  location while 

maintaining proper phase relationships. 

Calculation of torsional s tresees  produced by unbalanced 

torques for complex systems.  

Since all calculations are dependent on the initial 
values, it is imperative that rotary mass, stiffness, 
and damping be properly calculated and applied. Gear 
stiffness has classically plagued the accuracy of tor- 
sional calculations. However, the eigenvector-eigenvalue 
technique along with proper simulation of stiffness, mass 
and damping has been used to advantage in solving prob- 
lems in operating systems. 



NOMENCLATURE 

A, B, C, D, E. F = Complex functions of m a s s  and stiffness. 

Force  vector (torques inllbs).  

Tors ional  Modulus (lb/in2). 

Height of tr iangle in Figure  I (in). 

Height f rom chord t o  pitch c i rc le  in Figure I (in). 

Diagonalized m a s s  matrix.  

Stiffness matrix.  

Linear  stiffness of gea r  tooth. 

Rotational stiffness related to  a gea r  wheel. 

Total  l inear stiffness. 

Linear stiffness of dr iver  and d r ive r  gear.  

Linear stiffness af ter  the  corrections fac tors  a r e  applied. 

Face  width of gear  tooth (in). 

Dynamic magnification factor. 

Correction factor fo r  secondary effects. 

Gear  wheel radius (in). 

Length of chord a t  root of tooth (in). 

2 Modulus of elast ici ty ( lb l in  ). 

Angular displacement matrix.  

Angular acceleration ma t r ix .  

Diagonalized eigenvalue matrix.  

Operating frequency, radians p e r  second. 

Torsional natural  frequency, radian0 p e r  second. 

Diagonalized eigenvalue matrix.  
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TABLE I 

TORSIONAL EQUATIONS OF MOTION 





TABLE I I I 

RESONANT FREQUENCY PARAMETRIC ANALYSIS 

GEAR STIFFNESS TORSIONAL RESONANT FREQUENCY 
(in-lblrad) Hz 

0.1 x10 6 4.94 

1.0 x lo6 13*85 

3.8 x lo6 20,8 

6.24 x lo6 22.99 

10.0 x lo6 24.62 

100.0 x lo6 27.77 

1,000.0 x lo6 28.13 

10,000.0 x lo6 28.16 



LEASE CIRCLE 

PITCH CIRCLE 

GEOMETRIC NOMENCLATURE 

FIGURE I 



ENGINE SPEED, RPM 

CALCULATED PINION SHAFT STRESSES. 

FIGURE 2 



INTERFERENCE DlAORAM OF ENOINE ORDERS (E) AND 
COMPRESSOR HARMONICS (C) WITH TORSIONAL RESONANCES. 

FIGURE 3 




