National Conference on Power Transmission, 1975

| SCLATI ON OF TCRSI ONAL VI BRATIONS IN ROTATING MACH NERY

F. R SZENASI, P. E
Senior Research Engineer

L. E. BLODGEIT
Senior Research Physicist

Engi neeri ng Dynam cs Inc.
San Antonio, TX

ABSTRACT

Torsional vibration response of rotating machinery must
be determirned when designing an equipment train. Accu-
rate response predicticn requires sophisticatsd analysis
techniques which include considertion of all forcing
functions in the system in addition to the nass - elastic
properties of the shafts and couplings. Matrix methods
utilizing the eigenvalue solution provide an adequate
solution technique. A proper understanding of the
assumptions related to the solution technique i s essen-
tial. Such areas as Iumping, branched system inter-
pretation, gear tooth flexibility, and coupling para-
meters are but a few examples where assumptions must be
made which are essential to a proper solution. Isolation
of torional vibrations can be accomplished once the
system torsional response is properly defined. Case
histories utilizing this technique are presented to
illustrate methods of torsional isolation.

INTRODUCTION

Torsional vibration problems are being encountered in an
ever increasing numher due to the expanded use of high
speed rotary equipment. These problems are difficult

to recognize in their primary stages, and many times
they first manifest themselves when a failure occurs.
Typically, this type of failure results in a substantial
penalty in terms of plant downtime, involving first an



analysis of the source of the problem, and then the
definition and implementation of a suitable treatment.

To diagnose and minimize the occurrence of possible
failures due to torsional vibration, several types of
analysis may be employed.

The object of this paper is to present the most practi-
cal and accurate method for calculating both the tor-
sional resonant frequency and the forced vibration re-
sponse. With such analyses, stress levels can be cal -
culated and compared to a failure criterion. In addi-
tion, this gaper presents one method which has been
successfully used to evaluate the effect of gear stiff-
ness on torsional response. Although gear stiffness
is often neglected or improperly simulated in some in-
stances, field experience shows its effect are often
critical.

Case histories are included to give example data and to
illustrate how a forced vibration analysis can be used
to predict equipment reliability or to aid in failure
solution.

HOLZER ANALYSS

The method most commonly employed to calculate the tor-
sional resonant frequency of shafting systems is the
Holzer Analysis, chiefly because it is conveniently
adaptable to hand calculations. The method requires
successive estimates of the shaft resonant frequency as
input, and it is possible to overlook solutions if the
selected frequency increment is too large. The Holzer
tabulation method is useful for a cursory check of most
shaft systems; however, it becomes quite cumbersome and
tedious when a forced vibration response of complex sys-
tems is required. Forced vibration problems can be made
with the Holzer Analysis; however, this method does not
account fcr the phese of the forcing torques in a can-
plex forcing function; therefore, an error can exist.
This error 1s slight for relatively ccnstant torque
machines; however, in reciprocating compressors and in-
ternal combustion engines, the torque is decidedly
unsteady dae to piston stroke, and substantial errors
can therefore be incurred.

ability to properly simulate multiple branced geared
systems. The dynamically equivalent system presupposes
that the gear assembly is torsionally rigid, which is
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approxi mately the case in large industrial gear boxes

w th generous factors of safety. For |ess conservative-
Iy designed systems, gear tooth flexibility has a defi -
nite influence on the torsional frequencies and shoul d
be consi dered.

El GENVECTOR = EIGENVALUE MATRI X SOLUTI ON

A nore powerful and versatile nethod for solving torsiona
resonant frequencies is the eigenvector-eigenval ue matri x
solution. VWhile this nethod insures the cal cul ation of
all the possible nodes of vibration, it requires the use
of a digital computer as the conputati ons are numerous
and conplex. To calculate the tarsional resonant fre-
guenci es of a system a mathematical nodel nust be syn-
thesi zed, which will respond in the same nanner as the
actual system Al of the elastic, nmass and danpi ng
properties of the system are necessary to set up the

mat hemati cal model. Usually, these elastic properties
and the masss inertia can be cal cul ated, neasured or ob-
tai ned fromthe manufacturer of the el enent.

Sanpl e differential equations of notion have been witten
and a=e included in Table |I. These differential equa-
tions can be converted into a matrix equation for sim
plicity of solution, and the general form of the equation
woul d be:

[3] (8] = -[K] [e]

where [J] is the diagonalized nmass matrix and [K] is the
stiffness matrix. These matrixes are shown in Table II.
Conpl ex periodic notion nmay be reduced to individual

har noni cs whi ch can be handl ed easi er w thout conpro-

m sing the rigorousness of the solution. The equation
for sinple harnonic notion can then be assuned for the
general solution.

0 = Asinwt
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The following relationship for ® can be obtained by differentiation

0 = Aw coswt
-é = - zSinmt
T = -w?

By substitution, the matrix equation can be rewritten

[-3] [0%) (o] = -[x] [9]
where the [W'Z] represents the diagonalized eigenvalue matrix which will

be called [x]. This yields:

[-3) [n] (o) = -[k] [e]

By multiplying both sides of the matrix equation by [J] L the following

equation results:

[-x] [e] = -[3]? [K] [e]

and

[t w1 = tar o1 = o

This formof the matrix is the eigenval ue equation. The
val ues for [AX] for which the equation is soluble are
known as the characteristic values, or eigenval ues, of
the matrix. The vector sojutions for [8] are the eigen-
vectors of the matrix [J]17F [K] which shall be referred
to as the stiffness- nass matrix.

Physi cal ly, the eigenvector represents the node shape of
the vibration, The correspondi ng ei genval ue represents
the vibrational frequency squared. |n general, the
characteristic equation will have "n" roots with "n"
correspondi ng ei genvectors for a systemwith ™n"™ rotating
nmasses.
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The solution for the eigenvalues of a problem with five

masses will be a fifth order equation whose solution will
give five roots of the characteristic equation. Each of
these five roots will then represent a resonant frequency

squared. The characteristic equation of this example is
as follows:

Ak5+Bk4+Ck3+mz+Ek+F=0

(where A, B. C, D, E, and F represent complex functions
of mass and stiffness. The roots of this equation are
the eigenvalues from the eigenvalue problem).

The eigenvectors are obtained from the original eigenvalue
equation. A set of equations can be derived by using the
stiffness-mass matrix, multiplying by an unknown eigen-
vector, and forcing this to equal to the product of the
eigenvalue and the unknown eigenvector. This set of
equations can be solved for eigenvectorc, which represent
the vibration mode shape corresponding to the eigenvalue
or resonant frequency.

The eigenvector method of solving for the torsional re-
sonant frequency and mode shapes enables the calculation
of the forced vibrational response of the system due to
various forcing functions at different mass lociititns,
including the phasing of all forces. The damping of the
system must also be included to insure proper resonant
frequencies. An harmonic Fourier expansion of the forc-
ing function can be applied at any mess location. In
this manner, a complex forcing function with an arbitrary
number of harmonics can be simulated.

Systems containing several pinions driven by one gear
which cannot be simulated readily by simple hand calcu-
lation methods can be solved by the matrix method. The
stiffness matrix can be modified by additional off
diagonal terms which influence the deflection of the branch
point mass. These additional terms are best determined

by writing the torsional equations of motion in a syste-
matic method. The matrix equations containing the stiff-
ness matrix for a branched gear system will be solved in
the same manner.

Once the system has been modeled properly and forcing
functions applied, the amplitudes at each mass location
are known. Since relative deflection between the masses
determines the stresses in the shaft, stresses can be
calculated for each harmonic, and with proper phasing,
the complex peak-to-peak stress wave can be generated
which allows for the calculation of the maximum overall
peak-to-peak stress.
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CEAR TORSI ONAL STI FFNESS
Theory

In many geared systens the effect of gear stiffness can
exhibit a critical influence on cal culatingthe torsiona
natural frequencies of the system The effect of gear
stiffness is usually increasingly important as the dy-
nam c | oad fncreases above the normal transmitted static
torque load', particularly when the gear is located at a
dynanmi ¢ torque maxi mumin the torsional node shape.

Cear stiffness can only be approxi mated, since there are
several paranmeters varying during rotation. These include:

I nst ant aneous poi nt of contact
Direction of applied force
Nunber of teeth in contact

The foll owing discussion will be limted to spur and
bevel gears, since they represent a large majority of

cases where gear stiffness is critical. The tooth pro-
file is approximated by an isoceles triangle, and Figure
1 illustrates the approximtion and notation used. A The

linear flexibility is calculated fromthe equationZ2.

3 . h h h
1 le 100 2 303 log a _F 11 4+ _E + £
W= wry T et Bt IR 1V H T 2k 2h h
s o e i) ) kg GLT{1- £

Thi s val ue nmust be cal cul ated for each gearwheel and a
correction factor nust be applied to account for the
foll owi ng second order effects



(a) Depression of the tooth surface at the line of contact.
(b) Flexibility of wheel body adjacent to the tooth.
(¢) Deformation of wheel body.

Experience has shown the following correction factors ar e applicable:

(a) R = 1.3 for plain spur gears.
(b) R = 1.25 for bevel gears.
(©) R = 1.0 for internal spur gears.

Using these values, the linear flexibility as related to each gear wheel be-

comes:
1 I I 1 1 1
= R— — u=s Hme K = +
K.! L) | Kol 02 total LT | w1
l A“ ‘\1 ‘.\2

The torsional stiffness of the gear systemnust be rel ated
to the torque on the pinion or bullgear. Assumng that
the load is shared equally between the two teeth, the
following expression can relate the flexibility to the
appropri ate torque.

K 2 2

F ~ Ktc:d'.a.l

The torque related stiffness is in reference to the gear
wheel with radiusr. This stiffness can thereby be appli -
ed as a stiffness between the two gear wheel nass in-
ertias. The following sanpl e anal ysis indicates the in-
fluence of gear stiffness upon the torsional frequency.

FIELD CASE

In arecent startup at a chem cal processing plant there
were repeated cooling fan gear box failures. The failures
occurred after various |engths of operation ranging from
3-48 hours. A torsiograph was installed on one of the

fan systens, and the unit was started and tripped several
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tinmes. The data identified a torsional resonant frequency
at approximately 23 H.  Thi s resonant frequency was found
to be extrenely close to the bl ade- passi ng frequency of
the fan system(24 Hz.), indicating the Possibility t hat
the torsional resonance excited by the bl ade- passi ng per-
turbations was a contributing cause of the shaft failure.
In an effort to solve the problem the systemwas si nu-

| ated on the ei genvector-el genval ue conput er program The
gear stiffness was conputed as outlined, and the cal cul at -
ed torsional resonant frequency was i n good agreenent wth
the field data. To denonstrate the systemsensitivity to
gear stiffness, a paranetric anal ysis was made by varying
the gear stiffness. This data is presented in Table III.
I't shoul d be noted that the gear stiffness is inportant

i n the desi gn stage where col nci dence of resonant fre-
quency and excitationis to be avoi ded.

REQ PROCATI NG ENG NES
Theory

A conprehensi ve torsional anal ysis of a reciprocating
engi ne driven systemnust properly sinul ate the mass-
elastic properties of the crankshaft and the force pro-
duced by the power cylinders. S nulationof the engine
crankshaft stiffnesses and nmasses, although tedi ous, can
be acconplished with careful calculations 1,2 . The
forced vi bration response, however, is | ess straight-
forward since it nust include cylinder phasing (firing
order), gas torques (harnonic content), and reciprocating
mass I nertia in conbination w th the dynam c response
%node shape). Gas torque curves are usually avail abl e

or new engi nes in harnonic c%ntent formwhi ch can be
directly used in the anal ysis® .

The harnoni c torque anplitudes for each cylinder are
applied to the rotating nmass at each crank thrown by
expressing the torque function as a series of sine and
cosine terns including phase angles. In this form the
forcing functions are easily used in the eigenvector
matri x method which intrinsically conbines the forcing
function w th the dynam c response to produce t he vi bra-
tion anplitudes and stresses.

By utilizing the matrix generated fromthe equation of
notion, in conbinationwth the apPIied forces, the
torsional deflections can be calculated. A danping term
nmust be included to cal cul ate a dynamc magni ficatl on
factor (@) which provides a rel at1 onshi p between vi bra-
tional anplitude and frequency ration {(w/wn}s The
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vibrational amplitude can be simply expressed by the
following expression:

6] = QF [K] -}

This technique has been used to determine reliability of
reciprocating engine driven systems in the design stage
as well as in operating systems. The following operat-
ing unit, plagued by shaft failures, was analyzed by this
technique to determine the cause of failures.

Field Case

A plant air compressor system experienced several shaft
fallures because of operating near system torsional
natural frequencies. The system consists of a four-
cyliner air compressor driven by a 16-cylinder recipro-
cating engine through a gear box. The mass-elastic
properties of the system were calculated, and the tor-
sional system was simulated with the eigenvector-eigen~
value method. The calculated torsional natural frequen-
cies of interest are as follows:

f1 = 2688 cpm
f; = 4212 cpm
f3 = 6180 cpm

An initial analysis was made to study the effect of the
engine torques on the system. The forced vibration
analysis included both the engine and compressor |oading
torques which were obtained from the equipment manufac-
turers.

The maximum stresses for this system occurred in the
ﬁinion shaft and are plotted in Figure 2 for the engine
armonics and the second, third and fourth compressor

harmonics in the speed range of the unit. The fourth
compressor harmonic excites the first torsional natural
frequency at an engine speed of 1206 com. The tird har-
monic excites the first torsional natural frequency at
an engine speed of 1608 com. The second compressor
harmonic is on the flank of the reasonance curve, and
these stresses increase from 1700 to 3000 psi peak-to-
peak. The combined maximum stresses were caused by
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compressor loading torques at 1608 cpm and were slightly
in excess of 14800 psi peak-to-peak which exceeds the

U. S MIL SID* criteria for torsional stress levels. The
maximum stresses produced by the engine were 10,000 psi
peak-to-peak when the fourth order reacted with the
second torsional natural frequency.

The Campbell diagram or interference diagram shown in
Figure 3 indicates which engine and compressor harmonics
excite the torsional natural frequencies through the
speed range. The second engine order and the third and
fourth compressor harmonics excite the first torsional
natural frequency (Figure 2). These produce the major
contributing stresses which act on the system. The
second torsional natural frequency (4212 cpm), however,
can be excited by the fifth, sixth, and seventh com-
pressor harmonics as well as the third and fourth engine
orders. The effect of the higher harmonics exciting the
second torsional natural frequency serves to increase
the stresses of the pinion shaft also. The third tor-
sional natural frequency (6180 cpm) can be excited by the
seventh through eleventh compressor harmonics as well as
the fourth through sixth engine orders. These higher
harmonic torques will also contribute additional stress;
however, these harmonics produce a small percentage of
energy compared to the first few harmonics and conse-
quently do not cause a significant increase in stress
level.

DISCUSSON AND GONCLUSON

Proper design analysis should be implemented on rotary
equipment to insure increased reliability and minimal
downtime due to excessive maintenance or failures. One
area of major concern is the location of torsional
resonant frequencies relative to the excitation forces
in the system. The eigenvector-eigenvalue method pro-
vides the following information:

*The allowable torsional stress for this system
based upon US Navy MIL SID 167 is 4000 psi zero peak
or 8000 psi peak-to-peak



Calculation of all possible resonant frequencies directly.
Exact simulation of multiple-branched systems is possible
along with branch-on-branch capabilities.

Forcing functions can be applied to any mass location while
maintaining proper phase relationships.

Calculation of torsional stresses produced by unbalanced

torques for complex systems.

Since all calculations are dependent on the initia
values, it is inperative that rotary nass, stiffness,

and danpi ng be properly calculated and applied. Gear
stiffness has classically plagued the accuracy of tor-
sional calculations. However, the eigenvector-eigenval ue
techni que along with proper sinulation of stiffness, mass
and danpi ng has been used to advantage in sol ving prob-

| ems in operating systemns.
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NOMENCLATURE

D, E. F = Complex functions of mass and stiffness.
Force vector (torques in/lbs),
Torsional Modulus (Ib/in2).
Height of triangle in Figure | (in).
Height from chord to pitch circle in Figure | (in).
Diagonalized mass matrix.
Stiffness matrix.
Linear stiffness of gear tooth.
Rotational stiffness related to a gear wheel.
Total linear stiffness.
Linear stiffness of driver and driver gear.
Linear stiffness after the corrections factors are applied.
Face width of gear tooth (in).
Dynamic magnification factor.
Correction factor for secondary effects.
Gear wheel radius (in).
Length of chord at root of tooth (in).
Modulus of elasticity (1b/in2).
Angular displacement matrix.
Angular acceleration matrix.
Diagonalized eigenvalue matrix.

Operating frequency, radians per second.

Torsional natural frequency, radians per second.

Diagonalized eigenvalue matrix.
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TABLE |11

RESONANT FREQUENCY PARAMETRIC ANALYSIS

GEAR STIFFNESS
(in-Ib/rad)

0.1 x106
6

1.0X10
3.8x10°

6.24x 10°

10.0x 108

1000 x 10

1, 000.0 x 10°
10, 000. 0 x 10°

TORSIONAL RESOl_I\IZIANT FREQUENCY

4.94
13.85
20.8
22,99

24.62
21.77
28.13
28.16
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